Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Food Chem ; 452: 139548, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38728894

RESUMO

In this study, an electrochemical sensor based on MoS2 with enhanced electrochemical signals from electrochemically activated carbon cloth (EACC) electrodes and cross-linked o-aminothiophenol functionalized AuNPs (o-ATP@AuNPs) was developed for the detection of the unsaturated vegetable oil antioxidant tert-butylhydroquinone (TBHQ). In this approach, carbon cloth is activated through the implementation of electrochemical methods, thereby effectively increasing its specific surface area. The resulting EACC, serving as an electrode substrate, enables the growth of additional nanomaterials and enhances conductivity. The incorporation of MoS2 effectively augments the sensitivity of the electrochemical sensor. Subsequently, MIP/MoS2/EMCC is formed via electropolymerization, utilizing TBHQ as the template molecule and o-ATP@AuNPs as the functional monomer. The SS bond of o-ATP ensures a strong and stable connection between MoS2 and o-ATP@AuNPs, thereby facilitating the immobilization of MIP. In addition, the high conductivity possessed by o-ATP@AuNPs could effectively improve the sensitivity of the electrochemical sensor. Under the optimal conditions, MIP/MoS2/EMCC could determine TBHQ in the range of 1 × 10-3 µM to 120 µM by differential pulse voltammetry (DPV) with a detection line of 0.72 nM. The proposed MIP/MoS2/EMCC is expected to be applied in the future for the selective and sensitive detection of TBHQ in vegetable oils.

2.
Foods ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672818

RESUMO

Antarctic krill tropomyosin (AkTM) has been shown in mice to cause IgE-mediated food allergy. The objective of this work was to investigate the role of Notch signaling in AkTM-sensitized mice, as well as to determine the changes in gut microbiota composition and short-chain fatty acids (SCFAs) in the allergic mice. An AkTM-induced food allergy mouse model was built and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was used as an γ-secretase inhibitor to inhibit the activation of Notch signaling. Food allergy indices, some key transcription factors, histologic alterations in the small intestine, and changes in gut microbiota composition were examined. The results showed that DAPT inhibited Notch signaling, which reduced AkTM-specific IgE, suppressed mast cell degranulation, decreased IL-4 but increased IFN-γ production, and alleviated allergic symptoms. Quantitative real-time PCR and Western blotting analyses revealed that expressions of Hes-1, Gata3, and IL-4 were down-regulated after DAPT treatment, accompanied by increases in T-bet and IFN-γ, indicating that Notch signaling was active in AkTM-sensitized mice and blocking it could reverse the Th1/Th2 imbalance. Expressions of key transcription factors revealed that Notch signaling could promote Th2 cell differentiation in sensitized mice. Furthermore, 16S rRNA sequencing results revealed that AkTM could alter the diversity and composition of gut microbiota in mice, leading to increases in inflammation-inducing bacteria such as Enterococcus and Escherichia-Shigella. Correlation analysis indicated that reduced SCFA concentrations in AkTM-allergic mice may be related to decreases in certain SCFA-producing bacteria, such as Clostridia_UCG-014. The changes in gut microbiota and SCFAs could be partially restored by DAPT treatment. Our findings showed that inhibiting Notch signaling could alleviate AkTM-induced food allergy by correcting Th1/Th2 imbalance and modulating the gut microbiota.

3.
Chemistry ; : e202400121, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538538

RESUMO

It is vital to develop highly efficient non-doped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off for applications in display and lighting. Herein, two blue D-A fluorophores TPA-PO and TPA-DPO are designed and synthesized, in which phenanthro[9,10-d]oxazole (PO) acts as the acceptor and triphenylamine as the donor. TPA-PO and TPA-DPO display good thermal stability and efficient luminescence efficiency in neat film. Results based on photophysical property and theoretical calculation demonstrate that TPA-PO and TPA-DPO possess the hybridized local and charge-transfer (HLCT) feature, which can utilize the triplet exciton to achieve highly efficient electroluminance (EL). The non-doped OLEDs with TPA-PO/TPA-DPO as pure emissive layer show the uniform EL emission peak at 468 nm, corresponding to CIE coordinates of (0.168, 0.187) and (0.167, 0.167), respectively. The TPA-DPO-based non-doped OLEDs provide the maximum external quantum efficiency (EQE) of 7.99 % and high exciton utility efficiency of 48.4 %~72.6 %. Moreover, the TPA-DPO-based device exhibits low-efficiency roll-off, still maintaining the EQE of 6.03 % at the high luminance of 5000 cd m-2. Those findings state clearly that PO is a promising building block of blue fluorophore with a potential HLCT feature to be applied in non-doped OLEDs.

4.
Food Funct ; 15(4): 2103-2114, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305429

RESUMO

This study aims to introduce a new liposome to co-load Antarctic krill oil (AKO) and quercetin (QC) as a new delivery formulation to enrich the application of AKO and QC. The stability of liposomes could be increased by adding an appropriate quantity of soy lecithin (SL). Changes in the composition of the phospholipid membrane were strongly correlated with the stability and release capacity of loaded nutrients. SL2@QC/AKO-lips displayed a nearly spherical shape with higher oxidative stability and controlled the in vitro release performance of QC in simulated digestion. Moreover, in vitro studies indicated that new liposomes had no adverse effects on cell viability and could combine the physiological functions of AKO and QC to protect the HepG2 cells from oleic acid-induced steatosis and oxidative stress. The findings demonstrated that the AKO and QC co-loaded liposomes prepared with the addition of an appropriate quantity of SL had excellent loading efficiency of AKO/QC and good oxidative stability, security and functional activity.


Assuntos
Euphausiacea , Lipossomos , Animais , Lipossomos/farmacologia , Quercetina/farmacologia , Ácido Oleico/farmacologia , Óleos/farmacologia , Estresse Oxidativo , Lecitinas
5.
Microorganisms ; 12(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257979

RESUMO

To better understand the antibiotic resistance, virulence genes, and some related drug-resistance genes of Vibrio parahaemolyticus in farmed pacific white shrimp (Litopenaeus vannamei) in Ningde regions, Fujian province, we collected and isolated a total of 102 strains of V. parahaemolyticus from farmed pacific white shrimp in three different areas of Ningde in 2022. The Kirby-Bauer disk method was used to detect V. parahaemolyticus resistance to 22 antibiotics, and resistant genes (such as quinolones (qnrVC136, qnrVC457, qnrA), tetracyclines (tet A, tetM, tetB), sulfonamides (sulI, sulII, sulIII), aminoglycosides (strA, strB), phenicols (cat, optrA, floR, cfr), ß-lactams (carB), and macrolides (erm)) were detected by using PCR. The findings in this study revealed that V. parahaemolyticus was most resistant to sulfamoxazole, rifampicin, and erythromycin, with resistance rates of 56.9%, 36.3%, and 33.3%, respectively. Flufenicol, chloramphenicol, and ofloxacin susceptibility rates were 97.1%, 94.1%, and 92.2%, respectively. In all, 46% of the bacteria tested positive for multi-drug resistance. The virulence gene test revealed that all bacteria lacked the tdh and trh genes. Furthermore, 91.84% and 52.04% of the isolates were largely mediated by cat and sulII, respectively, with less than 5% resistance to aminoglycosides and macrolides. There was a clear mismatch between the antimicrobial resistance phenotypes and genotypes, indicating the complexities of V. parahaemolyticus resistance.

6.
World J Clin Cases ; 11(32): 7833-7851, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38073678

RESUMO

BACKGROUND: The Nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor has attracted much attention in the context of neurological diseases. However, none of the studies have systematically clarified this field's research hotspots and evolution rules. AIM: To investigate the research hotspots, evolution patterns, and future research trends in this field in recent years. METHODS: We conducted a comprehensive literature search in the Web of Science Core Collection database using the following methods: (((((TS=(NFE2 L2)) OR TS=(Nfe2 L2 protein, mouse)) OR TS=(NF-E2-Related Factor 2)) OR TS=(NRF2)) OR TS=(NFE2L2)) OR TS=(Nuclear factor erythroid2-related factor 2) AND (((((((TS=(neurological diseases)) OR TS=(neurological disorder)) OR TS=(brain disorder)) OR TS=(brain injury)) OR TS=(central nervous system disease)) OR TS=(CNS disease)) OR TS=(central nervous system disorder)) OR TS=(CNS disorder) AND Language = English from 2010 to 2022. There are just two forms of literature available: Articles and reviews. Data were processed with the software Cite-Space (version 6.1. R6). RESULTS: We analyzed 1884 articles from 200 schools in 72 countries/regions. Since 2015, the number of publications in this field has increased rapidly. China has the largest number of publications, but the articles published in the United States have better centrality and H-index. Among the top ten authors with the most published papers, five of them are from China, and the author with the most published papers is Wang Handong. The institution with the most articles was Nanjing University. To their credit, three of the top 10 most cited articles were written by Chinese scholars. The keyword co-occurrence map showed that "oxidative stress", "NRF2", "activation", "expression" and "brain" were the five most frequently used keywords. CONCLUSION: Research on the role of NRF2 in neurological diseases continues unabated. Researchers in developed countries published more influential papers, while Chinese scholars provided the largest number of articles. There have been numerous studies on the mechanism of NRF2 transcription factor in neurological diseases. NRF2 is also emerging as a potentially effective target for the treatment of neurological diseases. However, despite decades of research, our knowledge of NRF2 transcription factor in nervous system diseases is still limited. Further studies are needed in the future.

7.
Int J Food Sci ; 2023: 7576179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854461

RESUMO

Rubus alceifolius Poir (R.A. Poir) leaves are rich in phenolic compounds, offering many health benefits due to their incredible antioxidant potential. In this study, conditions for the ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activity from R.A. Poir leaves were optimized using response surface methodology (RSM). This methodology assessed the effects of ultrasound power (X1: 100-500 W), extraction temperature (X2: 30-60°C), and extraction time (X3: 5-55 min). The optimized UAE conditions were then compared with conventional extraction methods (Soxhlet extraction: SE and maceration extraction: ME) for extracting total phenolics. A phenolic profile using GC-MS and antioxidant activity (ABTS) was also compared. According to the RSM, the best conditions for UAE to extract the highest total polyphenol content and ABTS radical scavenging activity were 320 W ultrasound power, 40°C extraction temperature, and 35.5 min sonication duration. Under these optimal conditions, the TPC and antioxidant activity reached 16.68 mg GAE/g dm and 21.9 mg TE/g, respectively, closely aligning with the predicted values. The UAE extraction technique proved to be more efficient in extracting phenolics and antioxidant capacity (ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) radical scavenging activity, and enzyme inhibition) compared to the conventional extraction methods (SE and ME). A GC-MS analysis identified 12 components, including 5 phenolics and 3 flavonoids, which likely contribute to the antioxidant activity. Consequently, the UAE method improved extraction efficiency within a shorter time frame, suggesting that UAE is a promising, efficient, and ecofriendly technology for extracting bioactive compounds from R.A. Poir leaves.

8.
Front Bioeng Biotechnol ; 11: 1205911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576985

RESUMO

Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.

9.
Food Chem ; 426: 136508, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348399

RESUMO

A novel quench molecularly imprinted electrochemiluminescence sensor (MIECLS) based on a covalent organic framework composite (COF-300-Au) with enhanced electrochemiluminescence (ECL) signal from CsPbBr3 quantum dots and cross-linked 3-thiopheneacetic acid functionalized AuNPs (3-TAA@AuNPs) was developed for the detection of the environmental pollutant benzo(a)pyrene (BaP). A composite material constructed of COF-300-Au with a large specific surface area served as the sensor's support substrate, providing more CsPbBr3 and imprint recognition sites. Electropolymerization was then employed to form an AuNPs three-dimensional imprinting layer with polythiophene cross-linked using BaP as a template and 3-TAA@AuNPs as a functional monomer. A specific cross-linked imprinting recognition effect was recorded on BaP along with the quenching effect of quinones. The density functional theory (DFT) evaluation of the binding mechanism between 3-TAA@AuNPs and BaP revealed powerful MIECLS toward the detection of BaP at concentrations ranging from 10-14 to 10-5M, with a detection limit of as low as 4.1 × 10-15 M.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Benzo(a)pireno , Ouro , Óleos , Impressão Molecular/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
10.
Foods ; 12(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37238807

RESUMO

The occurrence of bisphenol A (BPA) and its structural analogs, known as endocrine disruptors is widely reported. Consumers could be exposed to these chemicals through canned foods, leading to health risks. Considerable advances have occurred in the pathogenic mechanism, migration law, and analytical methodologies for these compounds in canned foods. However, the confusion and controversies on sources, migration, and health impacts have plagued researchers. This review aimed to provide insights and perspectives on sources, migration, effects on human health, and surveillance of these chemicals in canned food products. Current trends in the determination of BPA and its structural analogs have focused on mass spectroscopy and electrochemical sensor techniques. Several factors, including pH, time, temperature, and volume of the headspace in canned foods, could affect the migration of the chemicals. Moreover, it is necessary to quantify the proportion of them originating from the can material used in canned product manufacturing. In addition, adverse reaction research about exposure to low doses and combined exposure with other food contaminants will be required. We strongly believe that the information presented in this paper will assist in highlighting the research needs on these chemicals in canned foods for future risk evaluations.

11.
Food Chem ; 420: 136100, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062085

RESUMO

The presence of various harmful substances in food is significantly risky to human health. Therefore, simple, rapid, and selective food hazard analysis tools have become a focus of sensing research. At present, molecularly imprinted polymers (MIPs) have attracted more and more attention because of their easy preparation and high selectivity. Due to their simple preparation, low cost, large specific surface area, and high conductivity, carbon nanomaterial can be used as sensing substrate carriers. Therefore, the combination of carbon nanomaterial with MIPs has attracted great attention. This paper summarizes the development, composition, and preparation methods of MIPs, as well as the latest research progress in carbon nanomaterials for the detection of various food hazards using sensors. In addition, the practical applications of carbon nanomaterial-based MIP sensors, their current challenges and future trends, and the ongoing efforts devoted to developing new and efficient carbon nanomaterial-based MIP sensing platforms are also introduced.


Assuntos
Imagem Molecular , Carbono/química , Polímeros Molecularmente Impressos , Substâncias Perigosas , Nanoestruturas/química , Humanos
12.
Microorganisms ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110274

RESUMO

In the current study, we screened 46 isolates of lactic acid bacteria (LAB) derived from goat milk for bacteriocin producers that can inhibit common foodborne pathogens (Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus). The following three strains that showed antimicrobial activity against all indicators were identified: Enterococcus faecalis DH9003 and DH9012, and Lactococcus lactis DH9011. Their antimicrobial products exhibited typical bacteriocin characteristics, such as heat stability and proteinase nature. The bacteriostatic activity of concentrated bacteriocins produced by these LAB was observed at low concentrations (half-minimum inhibitory concentration [MIC50] and 4MIC50), whereas complete inhibition activity against Listeria monocytogenes was detected at high concentrations (16MIC50) of the two Enterococcus faecalis strains (DH9003 and DH9012). Furthermore, the probiotic potentials of the three strains were investigated and described. The results revealed that none of the strains had hemolytic activity, whereas all: were sensitive to ampicillin (50 mg/mL) and streptomycin sulfate (100 mg/mL); were resistant to bile, artificial simulated intestinal tract, and gastric juice at different pH levels (2.5, 3.0, 3.5); and had ß-galactosidase activity. Furthermore, all strains exhibited an auto-aggregating phenotype, with self-aggregation ranging from 30% to 55%. DH9003 and DH9012 co-aggregated well with Listeria monocytogenes and Escherichia coli (52.6% and 63.2%, 68.5% and 57.6%, respectively), whereas DH9011 co-aggregated poorly with Listeria monocytogenes (15.6%) and did not co-aggregate with Escherichia coli. Furthermore, our results showed that all three isolates exhibited strong antibacterial activity, tolerance to bile and simulated gastrointestinal environments, adhesion capability, and safety. Finally, DH9003 was selected and used for gavage in rats. By observing the pathological characteristics of rat intestinal and liver tissue sections, DH9003 showed no harmful effects on the intestine and liver of rats, but rather resulted in a denser and longer intestinal mucosa, as well as improving the intestinal mucosa of rats. Considering their substantial prospective applications, we concluded that these three isolates are potential probiotic candidates.

13.
J Agric Food Chem ; 71(16): 6445-6457, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057995

RESUMO

Antarctic krill (Euphausia superba), a shrimp-like marine crustacean, has become a beneficial source of high-quality animal protein. Meanwhile, a special focus has been placed on its potential sensitization issue. In this study, a 35 kDa protein was purified and identified to be Antarctic krill tropomyosin (AkTM) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The purified TM showed a strong IgE-binding capacity to shrimp/crab-allergic patients' sera, indicating that TM is the primary allergen in Antarctic krill. Simulated gastrointestinal digestion revealed that the digestion stability of TM to pepsin was higher than that to trypsin. The strong degranulation triggered by TM in RBL-2H3 cells suggested that AkTM has a strong sensitization capacity. The TM-sensitized BALB/c mice displayed severe anaphylactic symptoms; high levels of TM-specific IgE, sIgG1, and histamine; and increased IL-4, indicating that AkTM could provoke IgE-mediated allergic reactions. Bioinformatics prediction, indirect competition ELISA, and mast cell degranulation assay were used to map the antigenic epitopes of AkTM. Finally, nine peptides of T43-58, T88-101, T111-125, T133-143, T144-155, T183-197, T223-236, T249-261, and T263-281 were identified as the linear epitopes of AkTM. The findings may help us develop efficient food processing techniques to reduce krill allergy and gain a deeper comprehension of the allergenicity of krill allergens.


Assuntos
Euphausiacea , Animais , Camundongos , Euphausiacea/química , Tropomiosina/química , Epitopos/química , Espectrometria de Massas em Tandem , Crustáceos , Alérgenos/química , Imunoglobulina E , Regiões Antárticas
14.
Proc Biol Sci ; 290(1996): 20230530, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37040807

RESUMO

The visual ecology of early mammals remains poorly resolved. Studies of ancestral photopigments suggest an ancient transition from nocturnal to more crepuscular conditions. By contrast, the phenotypic shifts following the split of monotremes and therians-which lost their SWS1 and SWS2 opsins, respectively-are less clear. To address this, we obtained new phenotypic data on the photopigments of extant and ancestral monotremes. We then generated functional data for another vertebrate group that shares the same photopigment repertoire as monotremes: the crocodilians. By characterizing resurrected ancient pigments, we show that the ancestral monotreme underwent a dramatic acceleration in its rhodopsin retinal release rate. Moreover, this change was likely mediated by three residue replacements, two of which also arose on the ancestral branch of crocodilians, which exhibit similarly accelerated retinal release. Despite this parallelism in retinal release, we detected minimal to moderate changes in the spectral tuning of cone visual pigments in these groups. Our results imply that ancestral forms of monotremes and crocodilians independently underwent niche expansion to encompass quickly changing light conditions. This scenario-which accords with reported crepuscular activity in extant monotremes-may help account for their loss of the ultraviolet-sensitive SWS1 pigment but retention of the blue-sensitive SWS2.


Assuntos
Jacarés e Crocodilos , Opsinas , Animais , Opsinas/genética , Rodopsina , Filogenia , Evolução Biológica , Mamíferos
15.
J Hazard Mater ; 447: 130799, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680900

RESUMO

Nanoscale zero-valent iron (nZVI) shows high effectiveness in the catalyzed removal of contaminants in wastewater treatment. However, the uncontrolled interfacial electron transfer behavior and formation of surface iron oxide (FeOx) layer led to severe electron wasting and occasionally form highly toxic intermediates. Here, we constructed magnetic mesoporous SiO2 shell on surface of nZVI to stimulate a magnetic spatial confinement effect and regulate the electron transfer pattern. Therein, Fe atom facilely spread out from the nZVI core, orderly release electron to surface adsorbed H2O molecule, which is efficiently transformed into active hydrogen (H*). Meanwhile, in-situ Raman revealed that Fe atoms were involved in the formation of penetrable γ-FeOOH rather than FeOx layer, enabling the continuous inward diffusion of H2O and outward diffusion of H* . Employing the catalyzed removal of halogenated phenols as demo reaction, the presence of magnetic mesoporous SiO2 shell utilized the reaction between electrons and H2O to switch the reaction pathway from the reduction/oxidation hybrid process to hydrodehalogantion, and increased the conversion of halogenated phenols-to-phenols by 5.53 times. This study shows the forehand of improving the decontamination performance of nZVI through sophisticated designed surface coating, as well as fine regulating the environmental behavior of magnetic material via micro-magnetic field.

16.
Mol Med Rep ; 26(5)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36148885

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease of the blood vessels, which is mainly characterized by the form of atherosclerotic plaques and vascular endothelial injury. Its formation involves abnormal lipid metabolism, oxidative stress and inflammation, as well as other processes. AS is the direct cause of various acute cardiovascular and cerebrovascular diseases, such as acute myocardial infarction and acute ischemic stroke. Early intervention in the atherosclerotic inflammatory process and lesion progression is beneficial, and has been associated with the primary prevention of a range of related diseases. Ferroptosis is a non­apoptotic form of cell death different from cell necrosis and autophagy, which has been shown to participate in atherogenesis and atherosclerotic progression through numerous signaling pathways. The main characteristic of ferroptosis is the formation of high levels of cellular iron catalytic free radicals, unsaturated fatty acid accumulation and iron­induced lipid reactive oxygen species accumulation, which can cause oxidative stress, and subsequent DNA, protein and lipid damage. There are numerous hypotheses about the pathogenesis of AS. At present, it has been suggested that ferroptosis can accelerate the progression of AS and that inflammation is associated with the whole process of AS. The mechanisms and signaling pathways related to the involvement of neuroinflammation and ferroptosis in the progression of AS, and therapeutic targets associated with ferroptosis have not yet been elucidated. The present review article evaluated the involvement of ferroptosis in the progression of AS from the perspectives of ferroptotic cell death, the pathogenesis of AS and nervous system inflammation, with the aim of exploring new therapeutic targets for AS.


Assuntos
Aterosclerose , Ferroptose , AVC Isquêmico , Aterosclerose/genética , Ácidos Graxos Insaturados/metabolismo , Humanos , Inflamação , Ferro/metabolismo , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo
17.
Food Chem ; 386: 132829, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35364492

RESUMO

In this study, a molecularly imprinted polymer (MIP) electrochemical sensor based on electrochemically modified graphite paper (EM-GP) was developed for the detection of 3-MCPD for the first time. To this end, Prussian blue (PB) was electrodeposited on EM-GP to yield uniformly distributed PtNPs. The successful preparation of Pt@PB/EM-GP was verified by SEM, Raman spectroscopy, XRD,XPS, and EDS. MIP was then prepared by CV electropolymerization with template molecules (3-MCPD), and density functional theory (DFT) at M06-2X/6-31 + g (d,p) level was used to calculate the molecular-level interaction between 3-MCPD and MIP. Under the optimum conditions, the dynamic linear range of the sensing platform varied from 1 × 10-8mol/L to 5 × 10-5mol/L with a detection limit estimated to 5 × 10-9 mol/L (S/N = 3). Overall, these findings look promising for the construction of selective and quick detection platforms of 3-MCPD in food samples.


Assuntos
Grafite , Impressão Molecular , alfa-Cloridrina , Técnicas Eletroquímicas/métodos , Eletrodos , Grafite/química , Limite de Detecção , Impressão Molecular/métodos , Polímeros Molecularmente Impressos
18.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055232

RESUMO

An approach to the detection of F- ions in food samples was developed based on a "switch-off-on" fluorescence probe of silicon nanoparticles (SiNPs). The fluorescence of the synthetic SiNPs was gradually quenched in the presence of Fe3+ ion and slightly recovered with the addition of F- ion owing to the formation of a stable and colorless ferric fluoride. The fluorescence recovery exhibited a good linear relationship (R2 = 0.9992) as the concentration of F- ion increased from 0 to 100 µmol·L-1. The detection limit of the established method of F- ion was 0.05 µmol·L-1. The recovery experiments confirmed the accuracy and reliability of the proposed method. The ultraviolet-visible spectra, fluorescence decays, and zeta potentials evidenced the fluorescence quenching mechanism involving the electron transfer between the SiNPs and Fe3+ ion, while the fluorescence recovery resulted from the formation of ferric fluoride. Finally, SiNPs were successfully applied to detect F- ions in tap water, Antarctic krill, and Antarctic krill powder.

19.
Genome Biol ; 22(1): 310, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763716

RESUMO

A modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.


Assuntos
Sequenciamento por Nanoporos/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Animais , Éxons , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Splicing de RNA , RNA Mensageiro , Transcriptoma
20.
Curr Biol ; 31(20): 4667-4674.e6, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34478643

RESUMO

In most vertebrates, the demand for glucose as the primary substrate for cellular respiration is met by the breakdown of complex carbohydrates, or energy is obtained by protein and lipid catabolism. In contrast, a few bat and bird species have convergently evolved to subsist on nectar, a sugar-rich mixture of glucose, fructose, and sucrose.1-4 How these nectar-feeders have adapted to cope with life-long high sugar intake while avoiding the onset of metabolic syndrome and diabetes5-7 is not understood. We analyzed gene sequences obtained from 127 taxa, including 22 nectar-feeding bat and bird genera that collectively encompass four independent origins of nectarivory. We show these divergent taxa have undergone pervasive molecular adaptation in sugar catabolism pathways, including parallel selection in key glycolytic and fructolytic enzymes. We also uncover convergent amino acid substitutions in the otherwise evolutionarily conserved aldolase B (ALDOB), which catalyzes rate-limiting steps in fructolysis and glycolysis, and the mitochondrial gatekeeper pyruvate dehydrogenase (PDH), which links glycolysis and the tricarboxylic acid cycle. Metabolomic profile and enzyme functional assays are consistent with increased respiratory flux in nectar-feeding bats and help explain how these taxa can both sustain hovering flight and efficiently clear simple sugars. Taken together, our results indicate that nectar-feeding bats and birds have undergone metabolic adaptations that have enabled them to exploit a unique energy-rich dietary niche among vertebrates.


Assuntos
Quirópteros , Animais , Aves/metabolismo , Carboidratos , Quirópteros/genética , Metabolismo Energético , Glucose/metabolismo , Néctar de Plantas/metabolismo , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA